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Abstract

Sequential search data has become increasingly important in economics and market re-
search. However, the existing structure based on Weitzman’s (1979) Optimal Search Rules
provides limited support for empirical study, making researchers struggle between using
search data with a high computation burden or discarding them completely. This paper
reformulates the solution of optimal sequential search with a partial ranking structure, es-
tablishing a fully static relationship among product values. This simplifies the model’s em-
pirical application while preserving complete search information. With the new structure,
I discuss the identification arguments and estimation implementation. I show its flexibility
in handling scenarios with partial search information, additional ranking information, and
structural changes within the search process (e.g., search and product discovery) with low
computational cost.
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1 Introduction

Consumer search data has become an indispensable resource in modern economic and market-
ing research. With increasing market differentiation and the rise of online shopping platforms,
the assumption that consumers possess perfect information about all available options at the
time of purchase is no longer tenable. Instead, consumers can actively search to reduce un-
certainty and make more informed final purchase decisions. Sequential search data provides
detailed insights into the search decision-making process, capturing information such as which
products were searched, the order of searches, and when the search stopped. This rich dataset
is invaluable for understanding consumer preferences and behaviors and serves as a critical tool
for developing effective strategies and evaluating market policies.

The Optimal Search Rules proposed by Weitzman (1979) have been a cornerstone for an-
alyzing search data, providing a framework for modeling consumer decision-making during
search and purchase. These rules link consumers’ choices to their preferences and search costs
and offer a foundation for understanding sequential decision-making. Despite the strengths,
the empirical application of the Optimal Search Rules remains challenging. As the Optimal
Search Rules are based on product values, connecting consumers’ sequential decisions helps
researchers construct the structure of product values to compute or simulate joint probabili-
ties for maximum likelihood estimation. However, the product values involved in each step
of optimal search depend on the outcomes of previous search steps. Since these outcomes are
private to consumers and not fully observed by researchers, interdependencies arise between de-
cisions. Consequently, the probabilities derived from these rules are computationally complex.
To address these challenges, Armstrong (2017) and Choi et al. (2018) introduce the Eventual
Purchase Theorem as an alternative approach. It enables researchers to directly derive consumer
demand using a standard discrete choice framework without relying on search data, making it
particularly useful when search behavior is not the focus of study or when search data is incom-
plete. However, this approach comes with limitations: it completely discards information about
the search process, making it unsuitable for analyzing search behavior. Researchers are thus
forced to choose between models that retain search path information but are computationally
complex, and those with simplified computation but forgo search-related insights.

This paper aims to bridge this gap by providing a simplified and flexible approach to the
empirical application of sequential search data. I propose a reformulation of the optimal solution
to the sequential search process, departing from Weitzman (1979) and introducing the Partial
Ranking (PR) structure. This structure captures the static relationships among all product values
encountered in the optimal search in a way that is equivalent to, but independent of, the Optimal
Search Rules. By adopting the PR structure, search sequences no longer need to be broken down
into step-by-step decisions based on the Optimal Search Rules. Instead, the process can be
modeled through conditionally independent probabilities centered on the utility of the purchased
product, similar to the structure of a multinomial discrete choice model. This reformulation
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shifts the focus to the final purchase as the anchor of the search process, eliminating the need to
condition each search step on the outcomes of earlier ones. As a result, researchers can utilize
the observed search sequence to infer consumers’ a priori ranking of product values, without
being encumbered by unobserved private information and computational complexity.

Compared to the Optimal Search Rules (OSR) structure, where product values are incor-
porated step-by-step based on consumers’ sequentially made optimal search decisions, the PR
structure offers significant advantages for empirical applications. Its advantage lies in represent-
ing the joint probability as a form that can be decomposed into conditionally independent value
differences, thus effectively addressing the challenges posed by interdependencies in identifi-
cation and estimation. In this form, I provide identification arguments for sequential search
models that are comparable to those in standard discrete choice models. I find these arguments
align with the identification results discovered through simulations in the empirical literature.
We then demonstrate how to estimate a sequential search model under the PR structure with a
GHK estimation method. Unlike the GHK simulator based on Optimal Search Rules, the core
idea behind my simulator is not to decompose and recombine the rules. Instead, it uses the GHK
sampling method to replicate the observed partial ranking and calculate its conditional proba-
bility given the utility of the purchased product. The implementation of my PR-GHK simulator
is much simpler than the existing OSR-GHK methods.

Beyond the baseline model, I demonstrate the PR structure’s exceptional flexibility in han-
dling partial search data. First, I show that the discrete choice model based on the Eventual
Purchase Theorem is a special case of the sequential search model under the PR structure when
ranking information is entirely unobservable. Next, I prove that purchase information can pro-
vide inferior ranking insights when the search process is not fully observable and can be inte-
grated with other known ranking information for estimation. Finally, I illustrate the PR-GHK
estimator’s ability to handle incomplete search information with an example where only the
first searched product and the final purchased product are observed in the data. The PR-GHK
estimation method effectively and fully utilizes the available search data and performs well in
Monte Carlo simulations.

Furthermore, under an independence assumption, the PR structure exhibits remarkable flex-
ibility in incorporating additional information and adapting to observable or tractable structural
changes in ranking conditions. For additional information, I demonstrate how the model can
incorporate additional signals, such as the commonly used “My Favorite” tag, to supplement
preference information beyond the search process. For structural changes, I extend the PR struc-
ture to the search-and-product-discovery model (Greminger, 2022, 2024; Zhang et al., 2023),
where consumers has additional option(s) to expand their awareness set at each step, increasing
the number of available products. Greminger (2022) proves that the optimal solution for this
model requires an additional optimal search rule to handle discovery behavior. I further show
how to integrate discovery behavior into the PR structure without directly introducing the addi-
tional rule but treating it as a choice that induces structural changes in consumer rankings. In

2



this scenario, the GHK method can still be used to reconstruct consumer ranking information
between each discovery, effectively incorporating search path and discovery data to estimate
the model.

This paper is related to the empirical application methodology of the sequential search
model. First, it contributes to the identification arguments of the sequential search model.
Current marketing literature mainly discusses which data variations in observed sequences are
informative to the corresponding parameters in the model (e.g., Kim et al., 2010). More re-
cent studies (Morozov et al., 2021; Ursu et al., 2024) attempt to formally indicate different
parameters correspond to different moments in the data, but these discussions lack complete-
ness due to their detachment from the structure of the search model. Second, it contributes
to the estimation of the sequential search model and its derivatives. Empirical research using
simulated maximum likelihood estimation has substantial developments based on the Optimal
Search Rules. The common simulators include the Crude Frequency Simulator (Chen and Yao,
2017; Ghose et al., 2019), which fits observed sequences by drawing uncertainties extensively
to approximate the joint probability of the samples numerically. The simulated likelihood is
derived from the average binary outcomes of whether all sequential discrete decisions in the
data are satisfied in the complete search process. Another widely-applied method is the Kernel-
Smoothed Frequency Simulator, employed by Honka and Chintagunta (2017) (also see Ursu,
2018; Ursu et al., 2020; Yavorsky et al., 2021; Ursu et al., 2023). This approach does not directly
fit the joint probability and does not require a formal expression. Instead, it maximizes a con-
structed kernel-smoothed function of the distances, capturing the extent to which the simulated
consumer decisions adhere to the Optimal Search Rules. The third method recently developed
is the GHK-style simulator (Jiang et al., 2021; Chung et al., 2024; Greminger, 2024). This ap-
proach sequentially samples uncertainties such that subsequent uncertainties satisfy the optimal
search rules related to previously sampled variables. Following the Optimal Search Rules, the
GHK-style simulator is complicated for implementation (Ursu et al., 2023); while following
the PR structure, I eliminate these deficiencies from the Partial Ranking-based GHK-style esti-
mator, significantly enhancing its applicability and extensiveness while retaining its advantages
over previous estimation methods.

The rest of the paper is arranged as follows: In Section 2, I define notations and set up the
sequential search model, explain the Optimal Search Rules, and illustrate the structure based on
the rules. In Section 3, I show the PR structure is an equivalent full description of the optimal
solution of the sequential search model to the Optimal Search Rules. In Section 4, I present
the joint probability, discuss the identification arguments, and introduce the estimation strategy.
In Section 5 I show the structure is compatible with partial search data. In Section 6 I show
the structure is compatible with additional information and observable structural changes in
the search process with the example of the search-and-product-discovery model proposed in
Greminger (2022). I conclude the paper in Section 7.
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2 Model and Optimal Search Rules (OSR) Structure

This section introduces the baseline optimal sequential search problem and Optimal Search
Rules proposed by Weitzman (1979). I first propose the notation restrictions to define the en-
vironment and the observation from the data. Then, I introduce the Optimal Search Rules and
show the structure set up on these optimal rules. The OSR structure is a straightforward policy-
oriented structure. Ursu et al. (2024) contribute a detailed review of the sequential search model
under the OSR structure, and I refer the readers to the paper for further understanding.

2.1 Notation for Sequence Observation

First, I define notations for the data observed in a sequential search environment. In general,
sequential search models are applied to the click-stream data, which records consumers’ final
purchases and the order of clicks on alternative products before purchasing. Therefore, obser-
vations in the click-stream data fully describe purchase decision and all search decisions made
for the purchase. I formalize them as the sequence observations as follows.

A typical consumer i has a unit demand for alternatives in a market. We assume that the
consumer obtains full knowledge of the market costlessly: she knows the existence of each
alternative in the market and the distribution of all market uncertainties. Her information set
is partial to product-level information. Denote the set of all products in consumer i’s market
by Mi. The set Mi supports consumer i’s search and purchase behaviors. I do not consider
that the consumer has any foreknowledge on product uncertainties before entering the market,
which will be discussed later in Section 5.

The incompleteness of the product information prevents the consumer from knowing the
exact utility of any product when she enters the market and, therefore, masks the first best
choice. The consumer can reveal product uncertainties to determine the utility, which is realized
through the behavior called inspection. In a costly search process, inspecting a product is not
free. Generally, it is not always optimal to inspect all products in the market regardless of
the cost. Only when the utility of a product is determined through inspection will a consumer
consider it as an element in her consideration set, from which she purchases one to purchase
at the end of a search process. The consideration set expands along with inspections going on
in the search process. When the search stops, the consideration set of all inspected products
is denoted by Si, and its size is denoted by Ji. The set of uninspected products is defined as
S̄i =Mi\Si.

The way of modeling a consumer’s decision-making process in search and purchase largely
depends on when the inspection decisions are made. In literature, the products inspected before
the purchase can be simultaneously determined when the consumer enters the market, or contin-
gently determined on search outcomes from previous inspections. The sequential search model
follows the latter, assuming that consumers make optimal inspection and purchase decisions at
every spot of the search process. Therefore, the consumer’s observed inspections result from a
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series of conditional optimal decision-making, and the order of inspections to products in the
consideration set matters.

Let the set of all possible inspection orders that lead to the consideration set of Si by K(Si).
The inspection order of consumer i’s search process is noted by Ri. We always have Ri ∈K(Si).
Following Ri, we number the products in the final consideration set, i.e., the first inspected
product is Product 1, the j-th inspected is Product j, etc. The last inspected product is numbered
Ji. Hence, every product with the number j ≤ Ji is inspected on j-th position in Ri and is an
element of Si. Hence, inspected products following Ri are marked by {1,2, · · · ,Ji}Ri . Let Hi

denote the purchased product, and hi denote its order number. Notice that Hi ∈ Si and hi ≤ Ji

always hold.
Hence, {H,S,R,M}i is called consumer i’s sequence observation, which fully captures

purchase and inspections before purchase consumer i conducts. For the clearness of represen-
tation, I will not stress the inspection order Ri when using ordered numbers to refer to products
in the following of the paper, and I will omit the subscription i in Hi, hi, Ji, Ri, Si and Mi when
they appear individually.

2.2 Values, Optimal Search Rules and OSR Structure

I now describe how sequence observations are taken in an optimal sequential search problem.
Consumer i’s final evaluation to a product depends on how much it matches consumer i when
all product-level uncertainties are resolved through inspection. We define uiH the purchase

value to refer to the utility consumer i expects her to obtain from purchasing product H had
she fully revealed the uncertainty of it. When consumer i enters the market, product-level
uncertainty prevents the consumer from knowing the purchase value of any alternative in the
market. Consumer i only knows the choice set and the distribution of the purchase value of
each product. Inspection with paying the cost ciH fully reveals the uncertainty of product H

and determines uiH . We do not incorporate consumer learning, so purchase values are invariant
throughout the search process once they are determined. In this case, a rational consumer solves
a dynamic optimization problem in which she sequentially decides whether to stop the search
and make a purchase or inspect another product after every inspection. After inspecting any
product j − 1 in the sequence, a rational consumer with a stopping utility of ūi j solves the
following Bellman equation:

W (ūi j, S̄i, j) = max

{
ūi j, max

K∈S̄i, j

{
−ciK +Fu

iK(ūi)W (ūi j, S̄i j\{K})+
∫

∞

ūi j

W (u, S̄i j\{K}) f u
iK(u)du

}}
(1)

Here, S̄i j is a set of uninspected products at each step of j. Fu
iK(·) and f u

iK(·) are the cdf and
pdf of uiK , assumed to be given information to the consumer. At every step j, the consumer
chooses between taking ūi j and inspecting another product with the highest expected value. The
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expected value of inspecting a product K consists of three components: the cost of inspection,
the value function when uiK is smaller than ūi j, and the value function when uiK exceeds ūi j.

Weitzman (1979) simplifies the dynamic optimization problem into a quasi-static discrete
choice model under an independent assumption: inspecting product i does not obtain any infor-
mation for those products not inspected. In this case, product purchase values are conditionally
independent. In addition, in Equation (1), inspection outcomes from previous steps only affect
step j’s decision-making through ūi j, which can be interpreted as the maximum purchase value
of products inspected up to step j−1. Hence, the dynamic optimization collapsed to a stepwise
static problem: should the consumer inspect a product with a given outside value?

Since the purchase value of a product is unavailable to consumers, the optimal decision
relies on the comparison between expected gains from inspecting the product and the search
cost. For a product K, suppose the utility that consumer i would obtain had the product not
inspected is ū. The consumer has extra gains through inspection only when the purchase value
of K exceeds ū. Hence, inspecting product K or not is indifferent when:

ciK =
∫

uiK>ū
(uiK − ū) dFu

iK(uiK) (2)

Similar to Equation (1), Fu
iK(·) is the cdf of uiK . Equation (2) is an implicit function of ū. The

right-hand side of the equation is monotonically decreasing with ū, so the solution is unique.
Marked by zi j, the solution is defined as the reservation value of the product K to consumer
i. When a consumer i has a determined alternative value that is larger than ziK , she will not
conduct an inspection of product K; otherwise, she will inspect product K. Intuitively, we can
regard ziK as the numerical expression of the value of conducting an additional inspection of
product K.

With purchase and reservation values defined, Weitzman (1979) proposes four optimal
search rules. These rules fully characterize the optimal solution of the baseline sequential search
model, and explain the information given in the sequence observation in the data.

1. Optimal Ranking: The reservation value of products inspected earlier is always larger
than the reservation value of products inspected later, i.e., consumer searches in decreas-
ing order of reservation values.

t1
i j ≡ zi j − max

k∈Mi\{1,2,··· , j}
zik ≥ 0,∀ j ≤ J.

With the Optimal Ranking rule, the observed inspection order Ri also captures the de-
scending order of reservation values of products inspected. Hence, following the Optimal
Ranking rule, we also number products that are off Ri and not in the consideration set Si

by J +1,J +2, · · · according to the descending order of their reservation values. Hence,
an uninspected product is numbered with k > J, and its reservation value among all prod-
ucts is the k-th largest to consumer i. Therefore, maxH∈S̄i

ziH in the above condition can
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also be expressed by maxk>J zik.

2. Optimal Continuing: consumer continues inspecting another product when the maximum
of purchase values among inspected products is smaller than the maximum of reservation
values of products not inspected:

t2
i j ≡ max

ℓ≥ j
ziℓ−

j−1
max
ℓ=1

uiℓ ≥ 0, ∀ j < J.

3. Optimal Stopping: consumer stops inspecting another product when the maximum of
purchase values among inspected products is larger than the maximum of reservation
values of products not inspected:

t3
i ≡ max

j≤J
ui j −max

k>J
zik ≥ 0.

Optimal Continuing and Stopping correspond to consumers’ decision to cease the search
process. According to the definition of reservation value, continuing is a better choice
when the reservation value of product j+ 1 is larger than the maximum purchase value
of those inspected. In contrast, stopping is optimal when the maximum purchase value
inspected exceeds the reservation value of all uninspected products. Optimal Stopping
applies to the last step of the search process, while Optimal Continuing applies to inspec-
tions in the middle of search.

4. Optimal Purchasing: Consumer purchases product H (numbered by h given Ri) if and
only if it has the largest purchase value among all inspected products.

t4
i ≡ uih − max

j≤J, j ̸=h
ui j ≥ 0.

The optimal search rules provide the optimal policy for each decision in the consumer’s
search process. At each step, the consumer first decides whether to continue searching (Optimal
Searching or Continuing). If continuing, they choose which product to inspect next (Optimal
Ranking). If stopping, they decide which product to purchase (Optimal Purchasing). These
policies fully characterize the optimal solution to the sequential search problem described in
Equation (1).

Take Figure 1 as an illustration. When a consumer enters the market, she first inspects the
product with the highest reservation value zi1 following the Optimal Ranking rule and reveals
ui1, the purchase value of the inspected product. According to the Optimal Continuing rule, con-
sumers continue inspection when the next largest reservation value in the market and the largest
reservation value among uninspected products, zi2, is larger than ui1. The second inspection
reveals ui2. She compares ui2 with ui1 and replaces the maximum purchase value of inspected
with ui2. In our illustration, ui2 is smaller than zi3, hence search continues. After product J is in-
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zi1

zi2

zi3

ziJ

ui1

ui2

ui3
uiJ

zi,J+1 zi,J+2

max ui j

Value

StepsStep 1 Step 2 Step 3 · · · Step J

Stop search

FIGURE 1 – The Optimal Search Rules (OSR) Structure

spected, for the first time, the maximum purchase value among inspected products exceeds the
maximum reservation value among uninspected products. The consumer terminates search, and
purchases the product with the maximum purchase value among inspected products according
to the rule of Optimal Purchasing.

The sequence observations record consumers’ complete search and purchase processes. For
each observation, we can replicate the search process similar to Figure 1. As the search pro-
gresses and stops at a purchase, we can construct a complete step-by-step product value struc-
ture following the optimal search rules, noted as the Optimal Search Rules (OSR) structure.
In the OSR structure, product values must ensure that each consumer decision aligns with the
corresponding optimal policy (shown as solid arrows in Figure 1). Therefore, for any sequence
observation, the joint probability is the probability that all optimal policies hold at each step:

Pr({h,S,R,M}i|Xi) = Pr(t1
i j > 0,∀ j ≤ J ∩ t2

i j > 0,∀ j ≤ J ∩ t3
i > 0 ∩ t4

i > 0) (3)

In most empirical studies, the joint probability expression based on the OSR structure serves
as the empirical foundation of the sequential search model. Although this probability does not
have a closed-form solution, researchers can estimate it using simulated maximum likelihood
methods.

However, while the OSR structure is intuitive and conceptually clear, it is not entirely suit-
able for empirical research. The primary reason lies in the dependency of the optimal rules -
except for Optimal Ranking - on the purchase value of products. These purchase values are
not known a priori and can only be determined through inspections within the search process.
Consequently, the probabilities of decisions in subsequent search steps are inherently correlated
to the outcomes of previous ones, yet it is unclear which specific outcomes drive these depen-
dencies. This makes the joint probability given in Equation 3 difficult to decompose effectively.

As a result, identification in sequential search models must rely on the full joint probabil-
ity, which significantly increases complexity compared to the common discrete choice model.
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It also requires estimation techniques to overcome the computation and implementation chal-
lenges when estimating the model, and existing estimation methods often lack the flexibility to
accommodate variations in the data or in the model 1.

3 Partial Ranking (PR) Structure

Tailoring a more flexible structure of the sequential search model to make it more applicable for
empirical research is an important topic. Here, I propose four conditions on the product values
in a sequential search process. The following proposition shows that these conditions hold if
and only if the optimal rules are fully satisfied, so they equivalently capture the optimal solution
of the sequential search model.

Proposition 1. For each sequence observation {H,S,R,M}i in the click-stream data, define

yi = min{uih,ziJ}, the minimum between the purchase value of the inspected product and the

reservation value of the last inspected product, as the core value of the sequence observation i.

Weitzman’s Optimal Search Rules hold if and only if the following conditions are fulfilled:

1. Distribution Condition: uih ≤ ziJ if h < J;

2. Rank Condition: zi1 ≥ zi2 ≥ ...≥ ziJ;

3. Choice Condition 1: ui j ≤ yi for all j < J, j ̸= h;

4. Choice Condition 2: zik ≤ yi for all k > J.

Proof. I first prove in showing the necessity that violating conditions in the proposition always
violates Weitzman’s Optimal Search Rules.

• When the Distribution Condition is violated, the Optimal Continuing Rule is violated.

• When the Rank Condition is violated, the Optimal Ranking Rule is violated.

• When the first Choice Condition is violated, there would be two cases. When ∃ j,s.t.ziJ <

ui j, the Optimal Continuing Rule is violated. The Optimal Purchasing Rule is violated
when ∃ j,s.t.uih < ui j.

• When the second Choice Condition is violated, there would be two cases. In the case
of ∃k,s.t.ziJ < zik, it violates the Optimal Ranking Rule. If ∃k,s.t.uih < zik, given the
Optimal Purchasing Rule is not violated, i.e., uih ≥ max j≤J, j ̸=h ui j, the Optimal Stopping
Rule is violated.

1In the introduction, we introduced three mainstream methods for estimation with Equation (3). Among them,
the Crude Frequency Simulator is unsuitable for large search models due to its computational burden. The Kernel-
Smoothed Frequency Simulator faces challenges in selecting scaling factors, which is critical to its performance but
difficult to determine; additionally, model or data variations need to be implemented with additional optimal rules,
introducing the need for more scaling factors. Lastly, the OSR-based GHK Simulator is significantly complicated
to implement even for the baseline model, and lacks a unified approach to handle model or data variations.
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Next, I prove sufficiency in showing that violating Weitzman’s Optimal Search Rules also vio-
lates conditions in the proposition.

• When the Optimal Ranking Rule is violated. If ∃ j1 < j2 < J such that zi j1 < zi j2 , the
Rank Condition is violated; if ∃ j < J such that zi j < maxk>J zik, the Choice Condition 2
is violated.

• When the Optimal Stopping Rule is violated. If the Choice Condition 1 holds, we have
uih = max j≤J ui j < maxk>J zik. Hence, ∃k > J,s.t.zik > uih, which violates the Choice
Condition 2.

• When the Optimal Continuing Rule is violated, it is to say that ∃ℓ < j ≤ J,s.t.zi j < uiℓ.
With the Rank Condition holds, we have ziJ ≤ zi j < uiℓ. If ℓ ̸= h, the Choice Condition 1
is violated; if ℓ= h, the Distribution Condition is violated.

• When the Optimal Purchasing Rule is violated, the Choice Condition 1 is violated.

Unlike the OSR structure, where product values have complex and hard-to-identify correla-
tions, the product values in these four conditions are centered around the core value, forming a
static, centralized structure as in Figure 2. With the equivalence proven in Proposition 1, this
structure retains all search information of the OSR structure without any loss.

Value

uih
ziJ

ui1 zikui2 zi,J+2ui j zi,J+1

zi,J−1

zi,2

zi,1

FIGURE 2 – The Partial Ranking Structure

The structure in Figure 2 is similar to a discrete choice structure with a ranking condition.
The two Choice Conditions describe the values that rank below the core value, corresponding to
the unchosen options in the discrete choice model. The Rank Condition provide the consumer’s
ranking to the reservation values up to the last inspection. The Distribution Condition specifies
the distribution of the core value, which is determined by the feature of the search process.

I term the structure presented in Figure 2 the Partial Ranking structure because it represents
optimal search outcomes as a partial ranking of reservation and purchase values for consumers
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in the market. As proven in Appendix A, this structure is independent of the Optimal Search
Rules and instead relies on the optimality results from the multi-armed bandit literature, par-
ticularly the branching bandit framework proposed by Keller and Oldale (2003). The authors
demonstrate that a Gittins Index policy is optimal in multi-armed bandit problems where actions
branch into new actions. In the proposed sequential search problem, we base the framework on
two key assumptions. First, inspections reveal uncertainty only for the inspected product (In-
dependence). Second, reservation and purchase values remain constant throughout the search
process (Invariance). Independence ensures that selecting the action with the highest reservation
or purchase value is optimal at each step. Invariance guarantees that the values of actions (reser-
vation values for inspections and purchase values for purchases) remains unchanged during the
search process, referred to as the ’Ranking of Values.’ Under these assumptions, the consumer’s
sequential decisions align with the ranking of values, analogous to branching decisions in the
branching bandit problem. Compared to a discrete choice based on purchase values, the ranking
of values captures much richer information from consumer choices, providing greater insight
into preferences and search costs 2.

Figure 3 illustrates how the optimal ranking of values forms a partial ranking structure in
a three-product case. While the ranking remains stable throughout the search process, only
reservation values are available to the consumer at the start, as purchase values are initially
unknown. Each inspection reveals the purchase value of a product, which is then incorporated
into the ranking without altering the magnitude or order of previously determined components.
However, the full ranking cannot be observed from the search outcome, as the purchase decision
ends the search and results in a censored observation. This occurs when an exogenous condition
is met - specifically, when a revealed purchase value exceeds all remaining reservation values.
While purchasing determines when the search ends, it does not affect the underlying ranking;
instead, it truncates the ranking by excluding the purchase values of uninspected products.

The cessation of the search transforms the ranking of values into a partial ranking, as the
purchase values of unpurchased products and reservation values of uninspected products are
censored from the data. However, it is known that these unobserved values are smaller than
the core value, which represents the set-identified smallest value among actions taken in the
observed sequence. The ranking information of both observed and censored values is fully
described by the conditions in Proposition 1, ultimately capturing all available information from
the search process.

In the OSR structure, consumers follow optimal search rules step-by-step along the inspec-
tion order Ri, constructing the consideration set Si and eventually purchasing the product Hi.
Each decision is made conditional on the previous ones. In contrast, the PR structure takes
the search process Ri ∈K(Si) as an observation conditional on the core value yi, given the pur-
chase of product Hi. The core value is central to this structure, as it represents the smallest value
identifiable from the observed partial ranking. When h < J, we know that uih is smaller than

2Ranked data plays a similar role to consumers’ “second choice” in Berry et al. (2004).
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FIGURE 3 – How the Full Ranking of Values Becomes Partial

ziJ . However, when h = J, this value becomes unidentifiable. In the PR structure, the observed
partial ranking of reservation values, the purchase values of unpurchased products, and the
reservation values of uninspected products are independent conditional on the core value. This
conditional independence makes the core value a sufficient statistic for the conditional distribu-
tions of all other components in the structure. As a result, this property simplifies the sequential
search process by removing the need to account for uninspected or unpurchased products when
considering optimal inspection decisions.

Compared to the OSR structure, the PR structure is particularly well-suited for empirical re-
search on sequential search problems. The PR structure is a static framework where inequality
relations connect all product values to at most one component emanated from the core value.
These inequality conditions, directly observable from the data, can reproduce the consumer’s
ranking of values without requiring consideration of uncertainties associated with other prod-
ucts. This characteristic significantly reduces interdependencies within the structure. Moreover,
the optimality of the PR structure relies on the Independence and Invariance assumptions, which
hold regardless of consumers’ decision-making in the search process. This makes the structure
sufficiently flexible for empirical analysis. On one hand, even if part of the search information
is unknown, the limited observed ranking condition derived from known information remains
unchanged and can be used for estimation. On the other hand, any additional information about
the unobservable components in the censored part of the ranking can be incorporated into the
existing structure. As long as the impact of exogenous or endogenous factors on the partial
ranking can be fully traced in data, the PR structure can also accommodate structural changes
in the ranking caused by these factors.
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4 Joint Probability, Identification and Estimation

The PR structure makes it possible to present the joint probability of the sequence observation
with a value-difference form similar to the discrete choice data or the ranked data (Hajivassiliou
and Ruud, 1994). This provides a different scheme from the existing literature to discuss the
identification arguments and estimation implementation of the sequential search model.

4.1 Joint Probability

Notice that different from Equation (3), the joint probability following the PR structure can be
expressed as:

Pr({H,S,R,M}i) = Pr(ziJ ≥ uih ∩ zi1 ≥ ...≥ ziJ ∩ max
j≤J

ui j ≤ yi ∩ max
k>J

zik ≤ yi) (4)

We consider an additive restriction on purchase and reservation values between stochastic ran-
domnesses and the expected value from those observed attributes. The baseline model setup is
as follows:

ui j = δ
u
i (X

u
i j)+ξ

u
i j + εi j

zi j = δ
z
i (X

z
i j)+ξ

u
i j +ξ

z
i j

Let us provide some notes on this setup. First, δ u
i (X

u
i j) and δ

z
i (X

z
i j) are two deterministic

components of product values. Both consumers and researchers can observe Xu
i j and X z

i j that di-
rectly affect consumers’ evaluation of inspecting or purchasing product j. The two components
are identical in many empirical settings, while they can be further differentiated with additional
components in X z

i j, such as an advertisement or a featured recommendation, which only affects
the inspection but not the purchase.

We incorporate three additional (potentially stochastic) terms into the model, complement-
ing the deterministic components. The first term, ξ u

i j, is a shared component influencing both
inspection and purchase decisions. This term represents a part of the product’s purchase value
determined by the consumer before inspection but unidentifiable in the dataset. It is also part of
the reservation value, typically interpreted as the consumer’s private information or subjective
taste for the product. The second term, εi j, captures product-level uncertainty resolved during
inspections. The evaluation of the solved uncertainty is modeled as the unidimensional value
added to the deterministic component in this linear specification. Consumers know the distri-
bution of εi j of each product j when entering the market. For simplicity and without loss of
generality, we assume the distribution of εi j is the same across all products and consumers, with
a cdf f ε(·) and a pdf Fε(·).

Lastly, ξ
z
i j is a component that only affects the reservation but not the purchase value. The

key aspect of this component is the rent created by the search cost ci j. When the search cost
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is zero, the solution to Equation (2) equals the expectation of the purchase value. However,
when the search cost is positive, the difference between the reservation value and the expected
utility of the purchase value represents the rent generated by the search cost. In our model,
the search cost influences consumers’ search behavior solely through the rent it generates. In a
linear specification, the rent from the search cost depends only on the distribution of ε and the
magnitude of the search cost. We represent it as mε(ci j), where mε(·) is a strictly decreasing
function 3. Additionally, there may be other unobservable random factors unrelated to the search
cost that influence consumers’ search behavior. These can be interpreted as unobserved platform
rankings (Ursu, 2018), search refinement mechanisms (Chen and Yao, 2017), or subjective or
behavioral shocks. To summarize, we have:

ξ
z
i j = mε(ci j)+ζ

z
i j

Again, we stress that the following assumptions hold:

Assumption 1: (Independence) Inspecting a product j does not lead to information on εik for
any k ̸= j.

Assumption 2: (Invariance) Product values remain unchanged during the search process.

Assumption 3: Consumer observes the values of ξ u
i j,ξ

z
i j at the beginning of search.

Assumption 4: εi j distributes independently and identically. Consumers know Fε(·) but not
the value of each εi j until product j is inspected.

To express the joint probability, we categorize the sequence observations in two cases. First,
we consider the case where the purchased product h is not the last inspected product J. We rep-
resent reservation values of inspected products (superscript k), reservation values of uninspected
products (superscript n), and purchase values of inspected products except for the purchased one
(superscript k′) in ordered vectorized forms as follows:

zk
i := (zi,J,zi,J−1, · · · ,zi,1)

⊤, zn
i := (zi,J+1, · · · ,zi,|M|)

⊤, uk′
i := (ui,1, · · · ,ui,h−1,ui,h+1, · · ·ui,J)

⊤

zk
i = δ⃗

z,k
i (Xz,k

i )+ξu,k
i +ξz,k

i , zn
i = δ⃗

z,n
i (Xz,n

i )+ξu,n
i +ξz,n

i , uk′
i = δ⃗

u,k′
i (Xu,k′

i )+ξu,k′
i +εk′

i

Following Proposition 1, the joint probability of the sequence is, therefore:

Pr({H,S,R,M}i) = Pr

 D̂︸︷︷︸
(J+|M|−1)×(J+|M|)


uih

zk
i

zn
i

uk′
i


(J+|M|)×1

≤ 0

 , where D̂ =

(
D̂1 D̂2

D̂3 D̂4

)

3The additivity of the search cost rent and the monotonicity of mε(·) are proved in Appendix B
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The difference matrix D̂ consists of four blocks:

D̂1 =



1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

... . . . . . . ...
...

0 0 · · · 1 −1 0
0 0 · · · 0 1 −1


J×(J+1)

, D̂2 = {0}J×(|M|−1)

D̂3 =


−1 0 · · · 0
−1 0 · · · 0

...
... . . . ...

−1 0 · · · 0


(|M|−1)×(J+1)

, D̂4 = I(|M|−1)×(|M|−1).

Hence, D̂ is of rank J+ |M|−1, and its form is determined by the sequence observation.
Now, we consider the case when the purchased product h is the last inspected. Following

the vectorized form in the previous case, the joint probability of the sequence is:

Pr({H,S,R,M}i) = Pr

 D̃︸︷︷︸
(J+2|M|−3)×(J+|M|)


uih

zk
i

zn
i

uk′
i


(J+|M|)×1

≤ 0

 ,where D̃ =

D̃1 D̃2

D̃3 D̃4

D̃5 D̃6



The difference matrix D̃ consists of six parts, in which:

D̃1 =



0 1 −1 0 · · · 0 0
0 0 1 −1 · · · 0 0
...

...
... . . . . . . ...

...
0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 −1


(J−1)×(J+1)

, D2 = {0}(J−1)×(|M|−1),

D̃3 =


−1 0 0 · · · 0

...
...

... . . . ...
−1 0 0 · · · 0


(|M|−1)×(J+1)

, D̃4 = I(|M|−1)×(|M|−1)

D̃5 =


0 −1 0 · · · 0
...

...
... . . . ...

0 −1 0 · · · 0


(|M|−1)×(J+1)

, D̃6 = I(|M|−1)×(|M|−1)

Hence, D̃ is also of rank J + |M|− 1. In the following of this paper, we represent the differ-
ence matrix as D, which takes one from {D̂, D̃} depending on Ri. The joint probability of an
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observation the baseline model is thus expressed as:

Pr({H,S,R,M}i) = Pr

D


uih

zk
i

zn
i

uk′
i

≤ 0

= Pr

D


ξ u

ih + εih

ξu,k
i +ξz,k

i

ξu,n
i +ξz,n

i

ξu,k′
i +εk′

i

≤−D


δ u

i (X
u
ih)

δ⃗
z,k
i (Xz,k

i )

δ⃗
z,n
i (Xz,n

i )

δ⃗
u,k′
i (Xu,k′

i )



(5)

The probability in Equation (5) is expressed in a value-difference form. To my knowledge,
this paper is the first to express the joint probability of the sequential search model in this way.
The probability expression in Equation (5) consists of two parts: the deterministic component
on the right-hand side, which is identifiable from the data, and the stochastic terms on the left-
hand side, which depends on structural assumptions. Notice that while we incorporate multiple
sources of stochasticity in this basic model, the inclusion and the structural settings of the
other stochastic components other than εi j depend on the specific model setup. I will discuss
this in detail in the next subsection. This value-difference formulation closely resembles the
probability structure in standard discrete choice models. Compared to the probit and ranked
data probabilities explored in Sections 5.6.3 and 7.3.2 of Train (2009), the only distinction lies
in our use of a different full-rank difference matrix for the partial ranking structure.

4.2 Identification

Building on the joint probability above, we explore identification issues in sequential search
models. For the current empirical study, we assume a linear deterministic component and con-
centrate on identifying the structure of the stochastic part. In the literature, identification is often
limited to heuristic approaches that link data variations to specific model parameters. Although
Morozov et al. (2021) and Ursu et al. (2024) provide more formal discussions, they rely solely
on conditional probabilities due to the inherent complexity of joint probabilities under the OSR
structure. This limitation results in some ambiguities, as multiple parameters may produce in-
distinguishable changes in a single conditional probability, while multiple subevents within the
search process can contribute to identifying a single parameter. For example, stopping deci-
sions depends on preferences, search costs, and the scale of uncertainties simultaneously, and
preferences can also be identified through consumers’ ranking decisions.

The joint probability expression in Equation (5) allows us to consider identification in se-
quential search models analogously to discrete choice models. This approach enables broader
identification arguments, clarifies necessary normalizations for empirical applications, and sheds
light on additional stochastic components and assumptions needed for model extensions. While
detailed identification issues may vary depending on model specifications, we focus on two
foundational principles of discrete choice models in this paper: "Only differences in utility mat-
ter" and "The scale of utility is arbitrary." The two principles correspond to location and scale
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normalization in discrete choice models, which remain essential in sequential search models.
Let us consider the first point. In our baseline model specification, the absolute value of

reservation and purchase values is irrelevant because of the value-difference form. If we add a
constant to the fixed component of all values (i.e., to the right-hand side of the inequality) and
cancel it out through the difference matrix, it will affect neither the consumer’s behavior nor the
joint probability of the observed data.

This irrelevance holds under the assumption that both reservation and purchase values are
composed of a deterministic component and a conditionally independent stochastic compo-
nent. This ensures the validity of the second equality in Equation (5). The stochasticity of the
purchase value is guaranteed with εi j, while the stochasticity of the reservation values needs
further assumption. Without the stochasticity, adding a constant to deterministic components is
not irrelevant, leading to two critical issues. First, incorporating alternative-specific constants
as controls is practically challenging, as both the relative and absolute sizes of these constants
affect the estimation of other parameters. Second, the lack of consumer-specific controls causes
a uniform shift in all product values, resulting in omitted variable bias in estimation. As in
discrete choice models, avoiding these issues is essential when applying sequential search mod-
els 4. In more complicated extensions of the baseline model, any new values introduced to
consumers’ ranking should also incorporate a stochastic component that remains conditionally
independent from other options.

Now, we address the second point, "The scale of utility is arbitrary," with the linearity
assumption of the deterministic components. In discrete choice models, scale is typically irrel-
evant in a linear preference model, and we achieve identification with a scale normalization on
the variance of the error component. However, in the case of sequential search models, scale
is relevant to the estimation outcomes in search costs and heteroskedasticity, even in a linear
deterministic specification. It results from that the distribution of εi j affects the reservation
value through the search cost rent mε(ci j). In general, mε(ci j) is not linear. Without additional
assumptions on Fε(·), a scale change in mε(ci j) does not lead to an identical scale change in
ci j. Hence, even if one can identify ξ

z
i j, one cannot identify ci j without the identification to

Fε(·). However, due to various challenges, the identification of Fε(·) in empirical studies is
often difficult, necessitating reliance on additional distributional assumptions.

We illustrate this difficulty with two examples in empirical works. In Kim et al. (2010),
they considered a context where the consumer has a pre-search mean-zero taste shock before
revealing the product unknowns via inspection. The taste shock is noted by ξi j and affects both

4Many studies in the search literature note that without additional stochasticity in reservation values, inspection
order is fully determined by given parameters, causing identical preferences and search costs to result in identical
inspection orders. While this issue does exist, it is not entirely insurmountable. When the number of products is
small, introducing more control variables and heterogeneity in preference parameters can increase the uncertainty
dimension and mitigate this issue.
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the reservation and the purchase values. Specifically, their model is:

ui j = Xi jβi +ξi j + εi j

ci j = c

zi j = Xi jβi +ξi j +mε(c)

(6)

Their specification introduces ξ u
i j = ξi j as the unobserved stochasticity while assuming zero

standard deviation for ξ
z
i j = mε(c). Hence, we decompose the joint probability in the stacked

vectorized form as following:

Pr({H,S,R,M}i) = Pr

D


ξih + εih

ξk
i

ξn
i

ξk′
i +εk′

i

≤−D


Xihβi

Xk
i βi + m⃗(c)

Xn
i βi + m⃗(c)

Xk′
i βi


 .

The identification arguments for this specification are detailed in Ursu et al. (2024) and
summarized here for comparison. Following Berry and Haile (2014), the random coefficient
setup can be identified if the distributions of εi j and ξi j are known. Assuming both follow mean-
zero i.i.d. normal distributions, we discuss whether additional assumptions on their standard
deviations (σε and σξ ) are required.

We first note that in this specification, ξi j appears in both purchase and reservation values.
Rescaling ξi j does not alter the relative scale of the linear parameters or mε(ci j)/σξ , making
scale normalization on ξi j necessary. In contrast, σε governs the nonlinear relationship between
search costs and the rents in reservation values, while also affecting purchase probabilities. Al-
though σε could theoretically be identified without additional assumptions, empirical studies
have consistently reported challenges in its estimation without supplementary information (Ya-
vorsky et al., 2021; Morozov et al., 2021; Greminger, 2024; Ursu et al., 2024). The reason
for this difficulty is unclear within the traditional OSR structure but becomes evident in our
representation of the joint probability: the presence of ξi j introduces an unobserved correlation
between purchase and reservation values. As shown by Keane (1992) in the context of multino-
mial probit models, identifying heteroskedasticity in such settings is highly challenging without
exclusion restrictions on observable regressors. This means for the identifictaion of σε , there
must be some observable attributes affecting reservation values but not purchase values. Since
the deterministic component of the reservation value shares the expected purchase value for the
same product, imposing such restrictions is usually economically unreasonable. Consequently,
many empirical studies rely on the assumption that εi j/σξ = 1. An exception is Yavorsky et al.
(2021), which introduces additional search cost shifters that affect only reservation values, suc-
cessfully imposing exclusion restrictions and achieving identification to σε .

The other specification is proposed in Chung et al. (2024). They introduce stochasticity to
the reservation value through heterogeneous search costs across products. Their model is given
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by the following:

ui j = Xi jβi + εi j

ci j ∼ Exp(c0)

zi j = Xi jβi +ξ
z
i j = Xi jβi +mε(ci j)

Their specification assumes a stochastic ξ
z
i j with a random search cost. The joint probability

can then be written as:

Pr({H,S,R,M}i) = Pr

D


εih

ξz,k
i

ξz,n
i

εk′
i

≤−D


Xihβi

Xk
i βi

Xn
i βi

Xk′
i βi




In this specification, the preference parameters βi are still not sensitive to the scale change, with
their relative scale remaining stable. On the other hand, the independence between εi j and ci j

eliminates the correlation between reservation and purchase values of the same product, the
primary challenge for identification. Hence, the heteroskedasticity can be correctly identified,
and the parameter estimation is not affected by weak identification caused by unobservable
correlations5. However, a new issue arises: the mean and variance of ξi j are jointly influenced
by the variance of εi j and the mean and variance of ci j. More importantly, the shape of ξi j’s
distribution is also affected by the mean and variance of ci j, making the identification of ci j

exceedingly difficult. These two parameters not only determine the mean and variance of ζ , but
also affect the shape of the distribution, which imposes additional difficulty to identification.
Therefore, Chung et al. (2024) propose strong assumptions in their working draft and published
version, respectively: that ci j follows a log-normal distribution with a known variance, or an
exponential distribution. Both assumptions ensure that the distribution of ζi j is determined by
a single parameter to be estimated, thereby addressing the model’s identification issue.

By decomposing Equation (4), we find that identifying sequential search models shares a
similar foundation with standard discrete choice models but involves greater complexity due to
the stochasticity of reservation values. First, the “only differences in utility matter” condition
requires that incorporating reservation values introduces additional stochasticity. Second, the
“scale of utility is arbitrary” condition does not extend to search costs or the heteroskedasticity
arising from the added stochasticity. Since researchers often rely on additional assumptions
about the distribution of εi j or ci j, which are not neutral for estimating search costs, it is essential
to interpret search cost estimation results with caution.

5Table 4 in Chung et al. (2024) reports the empirical validation of the comparison.
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4.3 Estimation

As we introduced earlier, when presented under the PR structure, the sequential search model
lies between the standard discrete choice model and the ranked model. Both structures, even
if their joint probabilities do not have a closed-form solution, can be estimated with simulated
maximum likelihood estimation using a GHK-style simulator. The same approach naturally
applies to the sequence search model. Take the specification of Chung et al. (2024) as an
example, the implementation procedure is as follows.

1. Draw preference heterogeneity to obtain β d
i . Draw εih to determine ud

ih for each draw.

2. If h ̸= J, draw ciJ conditional on ziJ > ud
ih and compute pd

i1 = Pr(ziJ ≥ ud
ih);

if h = J, draw ziJ randomly and assign pd
i1 = 1. Determine yd

i = min{ud
ih,z

d
iJ}.

3. Sequentially draw ci,J−1, · · · ,ci2 to determine zd
i,J−1, · · · ,zd

i2 conditional on zi j > zd
i, j+1.

Compute pd
i2 = ∏1≤ j≤J−1 Pr(zi j ≥ zd

i, j+1).

4. Compute pd
i3 = ∏J<k≤|Mi|Pr(zik < yd

i ) and pd
i4 = ∏1≤ j≤J, j ̸=h Pr(ui j < yd

i ).

5. Compute the likelihood contribution of each draw Ld
i = pd

i1 · pd
i2 · pd

i3 · pd
i4. Take average

across draws.

Here, we do not compare the performance of the GHK method with other methods used
in the empirical literature, such as the Kernel-Smooth Frequency Simulator or the Crude Fre-
quency Simulator, because the performance of our estimator is very close to the GHK method
proposed by Chung et al. (2024). We attribute the credit to Ursu et al. (2024) and Chung et al.
(2024), which conduct extensive simulation-based validation between estimation methods.

Compared to the other GHK method, our approach was established on an entirely differ-
ent structure, allowing us to simplify the implementation process, whose complexity was a
significant drawback under the OSR structure. The OSR-based GHK simulators construct the
likelihood function by enumerating, decomposing, and recombining the inequality conditions
from all optimal search rules. However, the implementation complexity depends on whether
the decomposition or combination is sufficiently straightforward, which depends on the au-
thors’ choice. In Jiang et al. (2021) and Chung et al. (2024), the authors enumerate three or
four cases for various sequences and devise unique implementation procedures for each case.
In contrast, we find such case-by-case analysis unnecessary under the PR structure.

The core idea of the PR-based GHK method is not to decompose and recombine the optimal
search rules but to utilize the sampling techniques of the GHK method to replicate the observed
search process in the data and calculate its probability. The implementation is divided into two
parts. The first part is based on the Distribution and Ranking Conditions, aiming to replicate the
partial ranking relationships revealed in the sequential observations. The second part involves
the two Choice Conditions, which calculate the probabilities of product values that do not attract
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the consumer to inspect or purchase. The two parts are conditionally independent of each other,
and the streamlined approach avoids the complex case-specific implementation and enhances
the flexibility of the estimation. While the implementation is simpler, the performance of this
method is almost identical to that of the OSR-base GHK estimator.

5 Extension 1: Partial Search Data

In the full model, the implementation logic of the PR-based GHK method is to replicate the
observed search process in the data and calculate its probability. This logic can be extended to
scenarios where the search process is not fully observed. Given the core value, the PR struc-
ture ensures that the observed and censored parts of the ranking are conditionally independent.
Therefore, we only calculate the probability that the reservation values satisfy the observed par-
tial ranking conditions without worrying about additional effects related to the optimal search
rules of other product values. In this section, I outline several common cases observed in the
data and explain how the PR structure addresses these cases. I also demonstrate how the PR-
based GHK method enables simulation-based maximum likelihood estimation that fully utilizes
partial information.

We first consider the case where a consumer knows the purchase values of certain products
before the search begins. These products do not enter the search process, so their reservation
values are missing from observation, and only their purchase values are included in the joint
probability. If a known product is chosen, it becomes part of the core value; if not, it is smaller
than the core value. We formalize it in the following Corollary:

Corollary 1. When a product is known to the consumer (its purchase value is determined)

without inspection observed. If it is not purchased, its purchase value follows Choice Condition

2; if it is purchased, all other products follow conditions in Proposition 1.

Corollary 1 is straightforward but important. One common example of a known product is
the outside option. The search sequence data can incorporate consumers who search in the mar-
ket but ultimately choose to exit. Without purchasing, these consumers’ search data naturally
identify the outside option’s market share without relying on other assumptions. In practice, we
often assume that the purchase value of the outside option is revealed after the first inspection to
guarantee at least one inspection, while Corollary 1 enables these consumers to be incorporated
into estimation as other purchasers. 6. Another important example is when the purchase values
of all products are known without searching. In this case, the partial ranking collapses, and the
core value becomes the purchase value of the purchase product. Conditions in Proposition 1,
except Choice Condition 1, become trivial, and the PR structure reduces to a standard discrete

6However, with only search and purchase data, we cannot identify consumers who opt for the outside option
without any inspection.
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choice structure. Therefore, with the supplement of Corollary 1, the discrete choice model can
be taken as a particular case of the sequential search model.

The second variation is when researchers only observe the set of inspected products but not
the exact search path. In this case, we take the aggregation of the probability of all potential
inspection orders that lead to the final purchase, and we obtain the following proposition.

Proposition 2. Define wi j = min{zi j,ui j} the Effective Value of product j to consumer i. If

wiH ≥ wiL, ∀L ∈Mi\{H}, then following Proposition 1, H is always inspected and purchased.

On contrary, wih ≥ wi j,∀ j ̸= h must hold for any {H,S,R,M}i fulfilling conditions in Propo-

sition 1.

Proof. We separate this proposition into three parts. First, a product with the largest effective
value must be inspected in any sequence that fulfills the conditions in Proposition 1; second,
given that the highest effective value product is inspected, it must be purchased; third, any
purchased product in the Rank Conditional Discrete Framework must have the largest effective
value in the market.

We start with proving the first part of the proposition. Suppose there is a consumer i, a prod-
uct H satisfying min{ziH ,uiH} ≥ min{ziL,uiL},∀L ∈ M\{H} is not inspected in her search
sequence. Denote the order of the purchased product by h′ and the last inspected product by
J′. According to the Choice Condition 2, ziH < yi = min{uih′,ziJ′}. If h′ = J′, min{uih′,zih′}=
min{uih′,ziJ′}> ziH ≥min{uiH ,ziH}; if h′ < J′, we know zih′ ≥ ziJ′ holds according to the Distri-
bution Condition. Hence, min{uih′,zih′}> min{uih′,ziJ′}> ziH ≥ min{uiH ,ziH}. In either case,
the effective value of the purchased product is larger than that of product H, which contradicts
H’s effective value condition. Therefore, product H is always inspected.

Then, we prove the second part of the proposition. Given that product H is inspected in any
sequence i, we denote H’s position in the sequence by h.

• Suppose a product j′ ≤ J, j′ ̸= h with ui j′ > min{uih,ziJ} exist. If h = J, according to the
largest effective value assumption, we have u′i j > min{uih,zih} > min{ui j′,zi j′}, hence
zi j′ < min{uih,zih}< zih. This violates the Rank Condition. If h < J, ui j′ > min{uih,ziJ}
is equivalent to ui j′ > uih. Because of the Distribution and the Rank Conditions, we
know that zi j′ ≥ ziJ > uih. Combine the two inequalities, we have min{ui j′,zi j′} > uih ≥
min{uih,zih}. This contradicts the largest effective value assumption on product H.

• Suppose a product k′ > J > h with zik′ > min{uih,ziJ} exist. Following Choice Con-
dition 2, we have min{uih,ziJ} < zik′ ≤ yi. The condition contradicts itself when h is
purchased, so we assume that a product h′ < J,h′ ̸= h is purchased. In this case, with the
Rank Condition and Choice Condition 1, we have min{uih′,zih′} ≥ min{uih′,ziJ} ≥ uih ≥
min{uih,zih}, which violates the largest effective value assumption.

Hence, whether product H is the last inspected product or not. min{uih,ziJ} fulfills the
Choice Conditions of the Core Value. Because purchase in the Rank Conditional Discrete
Choice framework is unique, H is the purchased product.
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Last, we prove the third part of the proposition. When product h is purchased, any inspected
product j ̸= h fulfills min{ui j,zi j}≤ ui j < yi =min{uih,ziJ}. Because h≤ J, following the Rank
Condition, min{uih,ziJ} ≤ min{uih,zih}. Therefore, min{ui j,zi j}< min{uih,zih}. Similarly, for
any uninspected product k > J, we have min{ui j,zi j} ≤ zi j < min{uih,ziJ}< min{uih,zih}.

Proposition 2 corresponds to the Eventual Purchase Theorem proposed in Armstrong (2017)
and Choi et al. (2018), showing that in the optimal search outcome, a product is purchased if
and only if its effective value dominates that of other products. Hence, it is possible to establish
a standard discrete choice structure that summarizes consumers’ purchasing outcomes without
knowing the exact search process. We stress that the PR structure also captures the discrete
choice structure. Intuitively, we separate the types of sequence observations conditional on
whether the reservation or purchase value dominates the effective value of the purchased prod-
uct. When min{ziH ,uiH} = uiH , any product L ∈ M\{H} satisfies either ziL ≥ uiH ≥ uiH or
uiH ≥ ziℓ. Let Si be the set of products following the first condition, and S̄i be the set of prod-
ucts fulfilling the second condition. This case corresponds to sequences where the consumer
purchases a product inspected before the last step, or purchases the last product whose purchase
value is smaller than its Reservation Value. When min{zH ,uH}= zH , any product ℓ ̸= h satisfies
either uiℓ ≥ ziH ≥ ziℓ or ziH ≥ uiℓ. Let Si be the set of products following the second condition
and S̄i be the set of products satisfying the first. This case corresponds to sequences where the
consumer purchases the last product whose purchase value exceeds its reservation value.

The Eventual Purchase Theorem is often used to directly derive consumer demand in se-
quential search contexts. However, its application typically discards the use of search data. The
likelihood of the discrete choice model based on the Eventual Purchase Theorem calculates the
probability of a single purchase decision among products’ effective values, which differs funda-
mentally from the joint probability in the OSR structure (Equation (3)). This disconnect poses
structural challenges when incorporating incomplete search data into the former. Proposition 2
provides a solution to bridge this gap. It demonstrates an intrinsic connection between the se-
quential search model and the discrete choice model based on the Eventual Purchase Theorem.
In the extreme case where search data is entirely unavailable, the effective value of the pur-
chased product serves as the only observable information of the consumer’s ranking, indicating
that all other products’ effective values are lower than that of the purchased product.

On the other hand, the effective value of the purchased product can also act as a weaker
ranking criterion when the last inspected product is not observed. Consider the scenario where
we only know which products the consumer inspected but have no information about the in-
spection order. Notice that all sequences satisfying conditions in Proposition 1 that lead to the
consideration set S and the purchase of product H if and only if the following conditions are

23



satisfied: 
min{uiH ,ziH0}> uiL,∀L ∈ S\{H}

min{uiH ,ziH0}> ziL′,∀L′ ∈ S̄

ziH0 > uiH if H0 ̸= H

(7)

Here, product H0 has the smallest reservation value among all products in S. Without loss of
generality, we assume that the product is unique. The following proposition holds:

Proposition 3. Conditions (7) are satisfied if and only if the following conditions are satisfied:
wiH > uiL,∀L ∈ S\{H}

wiH < ziL,∀L ∈ S\{H}

wiH > ziL′,∀L′ ∈ S̄

(8)

Proof. First, notice that min{uiH ,ziH}=wiH in Conditions (8) satisfy wiH ≥wiL,∀L∈M\{H}.
With Proposition 2, product H is also inspected and purchased under Conditions (8).

Consider the sufficiency. If H0 = H, the first and third inequalities in Conditions (8) are
immediately satisfied. For any product L with L∈ S\{H}, L is inspected. Following Proposition
1, L is inspected before H0 and ziL > zH0 = ziH ≥ min{uiH ,ziH}. If H0 ̸= H, we have ziH > ziH0 .
So min{uiH ,ziH} ≥ min{uiH ,ziH0} > uiL,∀L ∈ S\{H} and min{uiH ,ziH} ≥ min{uiH ,ziH0} >

ziL′,∀L′ ∈ S̄. For any product L with L ∈ S\{H}, L is inspected. Following Proposition 1, L is
inspected before H0 and ziL > zH0 > uiH ≥ min{uiH ,ziH}.

Consider the necessity. If H0 = H, the first and second inequalities in Conditions (7) are
immediately satisfied. If H0 ̸= H, according to the definition of H0, we have ziH0 < ziH ; H0 is
inspected, so H0 ∈ S\{H}. Therefore, min{uiH ,ziH} < ziH0 < ziH , implying uiH < ziH0 < ziH ,
which is the third inequality in Condition (7). In addition, min{uiH ,ziH} = min{uiH ,ziH0} =

uiH0 . The first and second inequalities in Conditions (7) are immediately fulfilled.

Proposition 3 demonstrates that when the last inspected product is unknown, the effective
value of the purchased product can provide incomplete search information. For a product with
no specific ranking information, the relationship between its reservation value and core value
determines when it is searched, while its relationship with the effective value of the purchased
product determines whether it is searched at all. The latter can still be incorporated into es-
timation with other incomplete search information when the former is unavailable, though its
information quality is less precise.

Propositions 1, 2, and 3 provide sufficient flexibility for us to make full use of the incomplete
search information observed in the data. We conclude this extension with a specific scenario:
we can only observe the first product consumers inspect and the product they eventually. In
this case, the search data is partially missing, and applying the optimal search rules seems
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impossible without a full simulation of the search process. To utilize the remaining part of the
search path, we can reconstruct the conditions in Proposition 1 and implement the estimator as
follows:

1. Draw heterogeneities to determine δi(·). Draw εih to determine ud
ih for each draw.

2. If h ̸= 1, draw zih conditional on zih > ud
ih and draw zi1 conditional on zi1 > zd

ih and compute
pd

i1 = Pr(zih ≥ ud
ih) ·Pr(zi1 ≥ zd

ih);
if h = 1, draw zi1 randomly and assign pd

i1 = 1. Determine wd
i = min{ud

ih,z
d
ih}.

3. If h ̸= 1, compute pd
i2 = Pr(ui1 ≤ ud

ih); if h = 1, assign pd
i2 = 1.

4. Draw ci j for all j ̸= 1 and j ̸= h conditional on zi j < zd
i1, compute pd

i3 = ∏ j ̸=1,h Pr(zi j ≥
zd

i1).

5. Compute pd
i4 = ∏k∈{ j:zd

i j>wd
i }

Pr(uik ≤ wd
i ).

6. Compute the likelihood contribution of the draw Ld
i = pd

i1 · pd
i2 · pd

i3 · pd
i4. Take average

across draws.

We observe that, even without knowing the last inspected product, combining the effective
value of the purchased product with the reservation value of the first inspected product helps re-
construct the observable ranking information available in the data. We validate the effectiveness
of the method with the following specification:

ui j =
3

∑
s=1

γtxs
j +βi pi j + εi j, where βi j ∼ N(β̄ ,σ2

β
);

ci j = exp(c0
i j), where c0

i j ∼ N(c̄0,σ
2
c );

zi j =
3

∑
s=1

γtxs
j +βi j p j +mε(ci j).

(9)

Here, xt
j are dummy product attributes, while p j indicate product prices. Following Section 4.2,

we impose distributional assumptions of σε = 1 and σc = 0.25. We obtain the following Monte
Carlo simulation results as follow:
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TABLE 1 – Monte Carlo Simulation Results with Purchase and First Inspection

True value Estimates

γ1 1 0.984 (0.094)
γ2 0.5 0.504 (0.027)
γ3 -0.2 -0.177 (0.071)
β̄ -0.6 -0.584 (0.096)
σβ 0.2 0.215 (0.206)
c̄0 -1.5 -1.407 (0.092)

N: 10000
D: 1000

Notes: Data are simulated for 10,000 con-
sumers, and the reported results are obtained
after averaging across 100 estimations with
different seeds and with 1,000 error draws
each. The standard deviation of the mean es-
timate across these simulations is reported in
parentheses.

This process effectively utilizes information from the initial inspection with only one ad-
ditional sampling (to zi1). It offers a practical approach to studying consumer search behavior
when search data is incomplete, enabling researchers to leverage available search information
while avoiding excessively computation-intensive simulations.

It is important to note that our method requires the availability of final purchase information
in the data. If such information is missing, it may be necessary to infer the final purchased
product through sampling. For instance, if only three products in the consumer’s search se-
quence are known, researchers would need to compute four joint probabilities: three for the
consumer purchasing each of the three products and one for not purchasing any of them. These
probabilities would then be summed up for estimation.

6 Extension 2: Additional Information and Structural Change

So far, our focus has been primarily on the baseline model. Beyond the baseline, the framework
of sequential search models can incorporate additional components, such as extra consumer
ranking information, multiple choices, and structural changes in ranking conditions. For tra-
ditional OSR structures, accommodating such additional information can be challenging, as it
may require imposing new optimal search rules to describe consumer behavior under the given
decision environment, thereby complicating the joint probability and the estimation process.
However, this limitation does not apply to the PR structure. Under the Independence assump-
tion, these additional pieces of information can be flexibly utilized in the estimation process.

Let us first consider the case of additional consumer ranking. Imagine a scenario where,
during the search process, a consumer adds a product ℓ to their “My Favorites” list for the
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first time. Since no other products in “My Favorites” are available for comparison, and the
action incurs no cost, we can assume that, up to this point, product ℓ has the highest purchase
value among all inspected products. As an additional ranking condition, we can construct the
estimator as follows:

1. Draw preference heterogeneities to determine βi. Draw εih to determine ud
ih for each draw.

2. If h ̸= J, draw ciJ conditional on ziJ > ud
ih and compute pd

i1 = Pr(ziJ ≥ ud
ih);

if h = J, draw ziJ randomly and assign pd
i1 = 1. Determine yd

i = min{ud
ih,z

d
iJ}.

3. Sequentially draw ci,J−1,ci,J−2, · · · ,ci1 to determine zd
iJ, · · · ,zd

i1 conditional on zi j > zd
i, j+1.

Compute pd
i2 = ∏ j≤J−1 Pr(zi j ≥ zd

i, j+1).

4. If h = ℓ, follow the rest of the baseline estimator implementation procedure; if h > ℓ,
proceed with the following.

5. Draw εiℓ conditional on uiℓ < yd
i .

6. Compute pd
i3 =∏k>J Pr(zik < yd

i ), pd
i4 =∏ j<ℓPr(ui j < ud

iℓ), pd
i5 =∏ℓ< j<J, j ̸=h Pr(ui j < yd

i ).

7. Compute the likelihood contribution of the draw Ld
i = pd

i1 · pd
i2 · pd

i3 · pd
i4 · pd

i5. Take average
across draws.

Following the previous specification in (10), the Monte Carlo simulation results as follows:

TABLE 2 – Monte Carlo Simulation Results with First My Favorite

True value Estimates

γ1 1 0.966 (0.137)
γ2 0.5 0.507 (0.041)
γ3 -0.2 -0.179 (0.096)
β̄ -0.6 -0.557 (0.137)
σβ 0.2 0.226 (0.302)
c̄0 -1.5 -1.356 (0.114)

N: 10000
D: 1000

Notes: Data are simulated for 10,000 con-
sumers, and the reported results are obtained
after averaging across 50 estimations with
different seeds and with 1,000 error draws
each. The standard deviation of the mean es-
timate across these simulations is reported in
parentheses.

It is important to note that while new information is introduced, our method does not require
additional optimal search rules to process this information, which can be a notable challenge
for the other estimators based on the OSR structure.
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Finally, we note that the estimation method based on the PR structure can be applied in sce-
narios where pure structural changes occur during the search process. Such structural changes
are characterized by modifications to the consumer’s ranking conditions without altering their
search strategy before and after the change.

A representative example is the consumer search-and-product-discovery model proposed by
Greminger (2022). In this model, when consumers are dissatisfied with the remaining products
in their market awareness, they can choose to incur a cost to expand their awareness set (Mi)
through a specific route, such as visit the sales page of rolling down the current list. The
expansion of the awareness set is defined as the behavior of discovery. This action introduces
reservation values for the newly discovered products at the point of discovery, integrating them
into the consumer’s ranking of values. Consequently, this update creates a structural change in
the original ranking conditions with an updated discovery option.

For this extended model, Greminger (2022) provides the corresponding optimal search rules.
First, he establishes that other products’ purchase and reservation values remain unaffected by
the possibility of future discovery actions. Beyond these two values, he demonstrates that the
discovery action itself can also be characterized by a discovery reservation value, which satisfies
the following condition:

cd
ir =

∫
∞

qd
ir

[1−Gir(w)]dw

Here qd
ir is the discovery reservation value, cd

ir is the discovery cost of a discovery route r

for consumer i, and Gir(w) is the cdf of consumers’ expectation of the largest effective value
obtained in one discovery. Greminger (2022) proves that consumer i’s discovery reservation
value on route r for the t-th time takes the form of:

qirt = Θi(E(Xi jr),Var(Xi jr),cins
i jr,c

dis
ir ,nr)+ τirt , where Pr(τirt < x) = Fτ(x)

Here, Θi(·) is a deterministic function of the empirical mean of product characteristics on route
r, the empirical variance of product characteristics on route r, the inspection search cost, the
discovery cost, and the number of discovered products within one discovery. Notice that we
allow an external stochasticity of τirt with known distribution for the discovery behavior. The
reason is the same as the stochastic reservation value specified in Section 4.2: to maintain the
identification of the modified model.

Greminger (2022)’s extension transforms the sequential search model into one with multi-
ple structural changes throughout the search sequence. Despite this complexity, it can still be
addressed using the estimation method under the PR structure. As long as the timing of each
discovery action is observable in the data, the consumer’s search process can be segmented with
discovery, and the ranking conditions for each segment are observed. In this approach, we cal-
culate a core value for each segment of the search process, starting from the final segment and
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working backward to reconstruct the ranking conditions. It is important to note that the ranking
conditions in each segment depend only on the products discovered up to that point. Similarly,
the purchase values of products not purchased in each segment are tied to the core value of the
current and following segments. This segment-based decomposition ensures that the estimation
remains manageable even when multiple structural changes occur during the search process.

We show the effectiveness of our estimation with a Monte-Carlo simulation with the follow-
ing specification:

ui j =
3

∑
s=1

γsxs
j +β pi j +ξ

u
i j + εi jr, where ξ

u
i j ∼N (0,1);

cins
i j = cins = exp(c0);

zi j =
3

∑
s=1

γsxs
j +β pi j +ξ

u
i j +mε(cins);

log(cdis
irt )∼ N(c1,σ2

c = 0.252);

qirt = Θi(Er(Xir,Pir,nd),Varr(Xir,Pir,nd),cins,cdis
irt ).

(10)

As the discovery cost cdis
irt is stochastic, we do not need τirt for identification.

We assume 2000 consumers search in a market with 1000 products; among them, 600 prod-
ucts are in Route 1, and 400 in Route 2, with Route 2 having lower prices but larger variances.
Each consumer initially meets with a market of only 1 product and an outside option while can
discover up to a maximum of 15 products randomly assigned from the two routes. Each time
of discovery reveals nd = 2 products unless there remains only 1 product not discovered on
this route. Appendix C summarizes the detailed implementation procedure. The Monte Carlo
Estimation results are shown in the following:
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TABLE 3 – Monte Carlo Simulation Results with First My Favorite

True value Estimates

γ1 0.3 0.292 (0.034)
γ2 0.2 0.180 (0.058)
γ3 0.1 0.096 (0.037)
β -0.6 -0.572 (0.017)
c0 -2 -1.953 (0.047)
c1 -2.5 -2.474 (0.052)

N: 2000
D: 1000

Notes: Data are simulated for 2,000 con-
sumers, and the reported results are obtained
after averaging across 100 estimations with
different seeds and with 1,000 error draws
each. The standard deviation of the mean
estimate across these simulations is reported
in parentheses.

The empirical applications of the search and product discovery model can also be found in
Greminger (2024) and Zhang et al. (2023). Greminger (2024) uses a different data structure,
as his dataset does not contain consumer search sequences, while Zhang et al. (2023) employs
the Kernel Smooth Frequency Simulator. Since Greminger (2022) provides alternative Optimal
Search Rules for structural changes related to product discovery, it is feasible to construct the
Kernel Smooth Frequency Simulator for estimation. However, its estimation performance is
inferior to the PR-based GHK estimation method, particularly in estimating search costs and
discovery costs.

Finally, we emphasize that our estimation method applies not only to cases where additional
optimal search rules can be derived but also to situations with observable structural changes
where no extra optimal search rules are available. Klein et al. (2024) examine the process of
preference discovery in a sequential search context, assuming that consumers receive an un-
predictable signal after making a choice (e.g., entering the checkout page), leading to a shift
in their preferences. Such changes alter all product values as well as consumers’ ranking in
the market, requiring them to revise their search decisions based on updated preferences. For
such a complex composite sequential search process, the computational and implementation
shortcomings of existing estimation methods are amplified, rendering them ineffective for es-
timation. In contrast, the Partial Ranking-based GHK estimation method provides a uniquely
effective and computationally efficient solution.
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7 Conclusion

The primary goal of this paper is to reduce the empirical constraints researchers face when
studying consumers’ search and purchase behavior. While significant efforts have been made
to enhance the rigor and feasibility of the widely applied sequential search model, its lack of
simplicity and flexibility often places researchers in a dilemma between using search data with
complex estimation challenges and ignoring it altogether.

This paper reconstructs Weitzman (1979)’s description of the optimal solution for search
models, introducing a partial ranking structure to represent the solution. Its most practical
contribution is removing the reliance on Optimal Search Rules for handling consumer search
data in practice, instead translating consumers’ sequential actions directly into their rankings to
product values.

For empirical researchers, this means that the interdependencies within the search model,
given the final purchase, are no longer an obstacle. When analyzing subsequent decisions,
researchers no longer need to account for whether later inspections or purchases were made
upon uncertainties observed in earlier inspections, transforming the search model into a simple
static framework. This transformation not only formalizes the joint probability for discussing
identification and simplifying estimation, but also offers flexibility in handling various types of
data, such as incomplete search data, supplemental data, and structural changes in the search
process.

The partial ranking structure lays a new foundation for applying sequential search models
in empirical studies, particularly in analyzing strategies or policies that influence the search
process. The PR-based GHK estimation method proposed under this structure is not only simple
to implement but also significantly enhances the flexibility and adaptability of utilizing observed
search data. Leveraging search data for research holds great potential in the digital age, and the
work in this paper lowers the barrier to broader applications of search data.
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A Optimal Search Strategy in the Sequential Search Model

This appendix proves that searching and purchasing along the descending order of the reserva-
tion values of all products and the purchase values of inspected products at the end of search
is the optimal strategy. We start from the "branching bandit" problem in Keller and Oldale
(2003), which regards the general sequential search model as a process to find the best outcome
of many multi-stage projects. In their framework, inspection action in an alternative decision-
making project can be understood as a branching action to a sub-project with information about
an alternative revealed, while purchase action in the project is a branching action that leads
to a termination and an outcome. Theorem 1 in Keller and Oldale (2003) demonstrates that a
myopic strategy that purchases the action with the largest Gittins Index in any project of the
problem is optimal, as long as the branching bandit problem satisfies the independence assump-
tion - choosing any branching action does not provide additional information about actions not
emanating from it. The optimality applies to our baseline model since it adheres to the indepen-
dence assumption: inspecting a product with uncertainty does not reveal any information about
the purchase value of other products.

It remains to be shown that search and purchase following the ranking of the reservation
and purchase values coincide with the Gittins Index Policy. Greminger (2022) highlighted that
the definitions of reservation and purchase values proposed in Weitzman (1979) are equivalent
to the Gittins index values for inspection and purchase actions. Specific to our baseline model,
the Gittins Indices of all actions in the problem remain unaffected by time or other exogenous
factors. Additionally, when taking any action at any project, the Gittins index of any other
alternative action in branched-off sub-projects remains unchanged, while the action taken can
never be chosen in any sub-project. As a result, if the consumer follows the Gittins Index
Policy and purchases an action in one project, the Gittins Index of the purchased action must
be greater than those of all alternative actions in any project of the problem. Hence, the rank
condition applies to the whole problem due to the invariance of the Gittins indices. Combining
the rank conditions from all steps, we obtain the complete rank condition for the Gittins Indices
observed, i.e., reservation values of all products and the purchase values of inspected products.
Hence, searching following the rank condition is the optimal strategy in our baseline model.
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B The Search Cost Rent in a Linear Specification

Denote δ u
i j(X

1
i j)+ξ u

i j in Equation (??) by vi j, which represent the value of the observed part of
product j before inspection. Taking it into Equation (2) leads to:

ci j =
∫

ui j>ū−vi j

(εi j − (ū− vi j)) dFε(εi j)

=

(
1−Fε

(
ū− vi j

σε

))∫
∞

εi j>(ū−vi jr)
(εi j − (ū− vi j))

f (εi j)

1−F
(

ū−vi j
σε

)dεi j

=

(
1−Fε

(
ū− vi j

σε

))
·E(εi j − (ū− vi j) | εi j > (ū− vi j))

=

(
1−Fε

(
ū− vi j

σε

))
·

σε ·
f ε

(
v̄−vi j

σε

)
1−Fε

(
v̄−vi j

σε

) −σε ·
v̄− vi j

σε


= σε

[
f ε

(
v̄− vi j

σε

)
−

v̄− vi j

σε

(
1−Fε

(
v̄− vi j

σε

))]

We see the above equation is only about ū−vi j
σε

. In addition, notice that

∂σε [ f ε (x)− x(1−Fε (x))]
∂x

=−σε (1−Fε (x))

which is always negative with a finite x. Notice that the left-hand side has a positive derivative,
it implies a bijection between v̄ and ci j. Therefore, we have a unique solution of v̄, denoted by
zi j. Define mε(x)=σε [ f ε (x)− x(1−Fε (x))]−1, we can represent the expression of reservation
value in Equation (??) by zi j = vi j +mε(ci j), with mε(ci j) a strictly decreasing function.

C GHK Estimator of the Search and Product Discovery Model

We segment the search sequence as follows: We segment the search sequence as follows: for
the J inspected products, denote the last inspected product before the a-th discovery as J(a−1).
Specifically, J(0) represents the last inspected product, J(1) corresponds to the last inspected
product before the second-to-last discovery, and so on. We start from Segmentation 0.

1. Draw ξ u
ih to determine zd

ih for each draw.

2. If h < J(0) or J(0) = J(1), draw εih conditional on uih < zd
ih to determine ud

ih for each
draw, calculate pi,0,0 = Pr(uih < zd

ih);
else, draw εih randomly to determine ud

ih for each draw, assign pi,0,0 = 1;

3. Check whether J(0)> J(1). If not, jump to Step 6.

4. If h ̸= J(0), draw ξ u
i,J(0) conditional on zi,J(0) > ud

ih and compute pd
i,1,0 = Pr(zi,J(0) ≥ ud

ih);
if h = J(0), draw zi,J(0) randomly and assign pd

i,1,0 = 1. Determine yd
i = min{ud

ih,z
d
iJ}.
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5. If h≤ J(1), sequentially draw ξ u
i,J(0)−1,ξ

u
i,J(0)−2, · · · ,ci,J(1)+1 to determine zd

i,J(0), · · · ,z
d
i,J(1)+1

conditional on zd
i,h > zi, j > zd

i, j+1. Compute pd
i,2,0 = ∏J(1)+1≤ j≤J(0)−1 Pr(zi,h > zi, j ≥

zd
i, j+1);

If J(1)< h< J(1), sequentially draw ξ u
i,J(0)−1,ξ

u
i,J(0)−2, · · · ,ξ

u
i,h−1 to determine zd

i,J(0), · · · ,z
d
i,h−1

conditional on zd
i,h > zi, j > zd

i, j+1, and sequentially draw ξ u
i,h+1, · · · ,ξ

u
i,J(1)−1 to determine

zd
i,h+1, · · · ,z

d
i,J(1)−1 conditional on zi, j > zd

i, j+1. Compute pd
i,2,0 = ∏J(1)+1≤ j≤h−1 Pr(zi,h >

zi, j ≥ zd
i, j+1)∏h+1≤ j≤J Pr(zi, j ≥ zd

i, j+1).

6. Compute yi0 = min{uih,zi,J(0)} if J(0)> J(1) and h = J(0), otherwise yi0 = uih.

7. Draw qira for all r such that qira < yi0. These are the discovery values that are not realized.
Calculate pi,5 = ∏r Pr(qira < yi0).

So far, we have accomplished the ranking condition reconstruction for the last segmentation.
We want to point out that the Step 5 is complicated because we introduce the heterogeneity of
reservation value through ξ u

i j but not search cost cdis
i j , which leads to correlation between search

reservation value and purchase value. This complicates the implementation but largely increase
the estimation process efficiency.

8. First, draw the discovery value qd
1 realized in this segmentation with several conditions

satisfied:

• It needs to be larger than the drawn reservation values of products already discovered
before or in this segmentation but inspected in later segments;

• It needs to be larger than all discovery values of other unselected routes;

• It needs to be smaller than zd
i,h if product h is inspected in this segmentation.

• It needs to be larger than ud
ih if product h is inspected in or before this segmentation.

Compute the probability of all these conditions being satisfied with pi,0,1.

9. Check whether J(1)> J(2). If not, jump to Step 12.

10. Draw ξ u
i,J(1) conditional on zi,J(1) > qd

1 and compute pd
i,1,1 = Pr(zi,J(1) ≥ ud

ih);

11. Draw reservation values of products inspected in this segmentation following Step 5,
obtain pd

i,2,1.

12. Compute yi1 = min{qd
1,z

h
i j} if h is discovered but not inspected, otherwise yi1 = qd

1,z
h
i j.

13. Replace the corresponding discovery value on the route discovered in this segmentation
in qira with q1a.

14. Repeat Step 8 to 12 until exhausting the observed sequence upto the last Segmentation T .
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So far, we finished the recovery of the ranking conditions observed in the search sequence.

15. Compute core value Yit for each t with the minimum yit among all current and later seg-
ments.

16. Compute pi,3 for the probability of the purchase value of all products inspected but not
purchased smaller than the corresponding core value.

17. Compute pi,4 for the probability of the search reservation value of all products discovered
but not inspected smaller than the corresponding core value.

18. Take products of all pi,0,r, pi,1,r, pi,2,r, pi,3, pi,4 and pi,5 as the simulated likelihood contri-
bution of the draw. Take average across draws.
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